Session 14

Research Presentation

Associate Professor Monika Doblin,
Research Director,
ARC Research Hub For Medicinal Agriculture

Mitigation of Hop Latent Viroid (HLVd) in Australia using biotechnology tools

A/Prof Monika Doblin

ACannabis - 13 March 2024

Hop Latent Viroid (HLVd)

- 256 nucleotide, noncoding RNA pathogen endemic to hop; cannabis is a non-host
- Symptoms and disease severity are genotype-dependent "duds" or "dudding disease"
- In 2019, ~90% of Californian cannabis plants tested positive for HLVd
- Potential US\$ 4B losses p.a.

https://medicinalgenomics.com/hop-latent-viroid-in-cannabis/

Adkar-Purushothama et al, 2023 Viruses 15

HLVd in Cannabis: Problems and Solutions

Problems:

- Infection can affect yield through reduced trichome density, looser flower buds, and up to 50% reduction in terpene and cannabinoid content
- Plants can be asymptotic until very late in their growth cycle
- Resistant cultivars can still be a source of contamination.
- Propagates through tools and machinery or through imported and infected cuttings, flowers, seeds (or even pollen)
- Now has a foothold in Australia

Solutions:

- Prevention through molecular testing and quarantining of imported (and infected) plant material
- Thermotherapy (hot or cold) can reduce the pathogen titre/load
- Immediate destruction of plants with visible symptoms to reduce spread
- Chemical sterilisation of tools (e.g. secateurs) between each plant (labourintensive, harsh on equipment, GMP issues)
- Culturing of plant tissue without vasculature can produce viroid-free propagules. Explants can be tested for viroid presence and be propagated to rid the tissue of pathogens

Loop-mediated isothermal amplification (LAMP)

- Rapid nucleic acid amplification technique
 - Time to result < 20 minutes
- Uses 4-6 primers to target a gene of interest
 - At different regions
- Constant amplification temperature
 - Only requires a heat source to perform
- Tolerates range of samples with minimal preparation
- Simplistic result output
 - Turbidity
 - Intercalating dyes
 - Real-time fluorescent readers

Image created with BioRender

LAMP vs PCR-based assay

		LAMP	qPCR	PCR
Ō	Time to result	≤20 min	~90 min	~2-3 hrs
	Sample prep	Minimal prep	Stringent prep	Stringent prep
***	Field- deployable?	Yes	Yes^	No
= ××	Real-time results?	Yes	Yes^	No
©	Accuracy	Very high (≥95%)	Very high (≥95%)	High (~80%)
• • •	Cost	\$	\$\$\$	\$\$\$

[^] Requires specialist equipment

LAMP sample preparation

Example: RNA extraction from Cannabis sativa for detection of Hops Latent viroid (HLVd)

Assay developed by: Alexandra Knox (PhD candidate) and Professor Travis Beddoe – Agriculture BioSolutions

LAMP Genie II results output

Example: RNA detection from Cannabis sativa

RNA extraction reference assay (18S rRNA)

Sample	Tp 1 (mm:ss)	Tp 2 (mm:ss)
S01	04:59	04:21
S02	05:14	05:14
S03	03:36	03:34
S04	03:48	03:51
S05	04:27	04:40

Introduction to Tissue Culture (TC)

Tissue Culture: Pros and Cons

Advantages:

- Perpetual propagation of disease-free plant material
- Can produce large number of plants in a limited amount of space and time
- Safekeeping of genetic diversity
- Low maintenance costs (energy, water, space and labour)
- Cannabis plants grown *in vitro* are true-to-type when compared to traditional propagation method of vegetative propagation (harvest index, cannabinoid content in production plants; number of cuttings produced by mother plants)

Disadvantages:

- Requires a specialised facility and equipment
- Requires trained personnel
- Plant growth in tissue culture conditions seems to be cultivardependent

Establishing Viroid-free Crops in TC

Young axillary shoots of glasshouse-grown plants are surface-sterilised (A) and grown in tissue culture (A and B). Meristems are isolated and grown individually. TC-grown plants have their roots sampled for LAMP assays (C) and viroid-free tested plants are grown further (D). These plants can be micropropagated (E) and can easily be perpetually maintained viroid-free until deflasked to the glasshouse (F).

Conclusion and Perspectives

- Tissue culture and LAMP assay detection of HLVd can future-proof the cannabis industry, in combination with multilayer management (a regular testing regime and good hygiene practices)
- Molecular diagnostics tools applicable to cannabis aren't restricted to HLVd other pathogens can be rapidly detected in a timely and cost-effective manner
 - e.g. Powdery mildew (Golovinomyces spp.), Fusarium and Pythium root and crown rot, etc

Thanks and Acknowledgements

CANN GROUP LIMITED

Tony Bacic Veronica Borrett

Travis Beddoe Alexandra Knox

Martin O'Brien Shyama Fernando Stefanie Kabitz

Jasmine Lagamba

Filippa Brugliera

LAMP vs PCR-based: Workflow comparison

Knox & Beddoe, 2021 Animals 11